Alzheimer’s disease is a neurodegenerative disease characterized by extracellular amyloid-β (Aβ) plaques and intracellular neurofibrillar tangles containing pathological tau protein aggregates. Even though both, Aβ and tau, are related to Alzheimer’s disease, studies have shown that the degree of tau-related pathology correlates better with the degree of dementia than the amyloid plaque burden. Human tau, which exists in six isoforms of different length, is used in cerebrospinal fluid as a sensitive and specific biomarker for Alzheimer’s disease, usually determined by ELISA.

In addition to our catalog portfolio of over 250 Alzheimer’s disease related research products, Bachem now offers a comprehensive choice of tau peptides including phosphorylated sequences as new catalog products.

Tau Protein

Microtubules are part of the cytoskeleton, tubulin polymers with various cellular tasks. For instance, they play a role in stabilizing cell shape and during mitosis, and act as tracks for intracellular transport by motor proteins. Microtubules are stabilized by various types of microtubule-associated proteins which bind to their surface and promote their self-assembly from tubulin subunits. Tau (Microtubule-Associated Protein Tau, MAPT) [1] stabilizes the microtubules of the neuronal cytoskeleton and thus is important for their regular function. Tau protein is primarily expressed in neuronal cell bodies and axons.

The binding affinity of tau for microtubules is regulated by the phosphorylation state of the protein. In healthy neurons, the protein is phosphorylated by a number of kinases and dephosphorylated by phosphatases [2,3]. An equilibrium of phosphorylated and non-phosphorylated forms serving as tau pool exists in the cytosol. Phosphorylation is reverted when tau binds to tubulin. Glycogen-synthase kinase-3β (GSK-3β), cyclin-dependent protein kinase 5 (cdk5), and cAMP-dependent protein kinase (PKA) are amongst the most important tau kinases [4]. Protein phosphatase PP2A was found to be the major tau phosphatase [3,5]. In Alzheimer’s disease (AD) or other pathological conditions known as tauopathies, phosphorylation of the protein is dysregu-
lated leading to a decrease of the tubulin-binding capacity. Whereas the microtubules are destabilized, hyperphosphorylated tau protein aggregates yielding the so-called neurofibrillary tangles (NFTs), one of the hallmarks of AD [6-9]. In NFTs, the extent of tau phosphorylation was found to be 3 to 4 times higher than in cytosolic tau of healthy and AD brains [10].

Tau is a rather disordered highly flexible protein. Due to its random coil conformation

<table>
<thead>
<tr>
<th>Clone*</th>
<th>Inserts/Repeats</th>
<th>Number of AA</th>
<th>MW (kDa)</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>htau23 (fetal tau)</td>
<td>0N/3R</td>
<td>352</td>
<td>36.7</td>
<td>MAEPROEFGVDHAGTYLDRQDGQYMTMQDQEGTDAGLKAEEAGIDTPSLEDEAGHVTOARMSKSDGSDDKAKAGDGTKIATPRGAPPAGGKGGQANATRIAPKTPAPKTPSGGSPEPPKGDRGSGYSGPGSGPTPSRTPSPLPTTEPVPKKVRTPKPSQASAKSLQATAPVPMPLDNKVKSGKSTHENLKHQQGGKVQIVYKPVLSDKVTSCGSLGNHHKPGGGQEVEKSLDFKDRVQSKIGSLDNITHVPGGGKKKEIETHKLTFRENAKAKTDHGAIEYKSPVSGDTPRHSNPVSTGSIDMDVSQPLATLADEVASLAKGQ</td>
</tr>
<tr>
<td>htau37</td>
<td>1N/3R</td>
<td>381</td>
<td>39.7</td>
<td>MAEPROEFGVDHAGTYLDRQDGQYMTMQDQEGTDAGLKLKEPLQTPTGEDSEEPSDSEGSETDAKSTPTAEAEAGIDTPSLEDEAGHVTOARMSKSDGSDDKAKAGDGTKIATPRGAPPAGGKGGQANATRIAPKTPAPKTPSGGSPEPPKGDRGSGYSGPGSGPTPSRTPSPLPTTEPVPKKVRTPKPSQASAKSLQATAPVPMPLDNKVKSGKSTHENLKHQQGGKVQIVYKPVLSDKVTSCGSLGNHHKPGGGQEVEKSLDFKDRVQSKIGSLDNITHVPGGGKKKEIETHKLTFRENAKAKTDHGAIEYKSPVSGDTPRHSNPVSTGSIDMDVSQPLATLADEVASLAKGQ</td>
</tr>
<tr>
<td>htau39</td>
<td>2N/3R</td>
<td>412</td>
<td>42.6</td>
<td>MAEPROEFGVDHAGTYLDRQDGQYMTMQDQEGTDAGLKLKEPLQTPTGEDSEEPSDSEGSETDAKSTPTAEAEAGIDTPSLEDEAGHVTOARMSKSDGSDDKAKAGDGTKIATPRGAPPAGGKGGQANATRIAPKTPAPKTPSGGSPEPPKGDRGSGYSGPGSGPTPSRTPSPLPTTEPVPKKVRTPKPSQASAKSLQATAPVPMPLDNKVKSGKSTHENLKHQQGGKVQIVYKPVLSDKVTSCGSLGNHHKPGGGQEVEKSLDFKDRVQSKIGSLDNITHVPGGGKKKEIETHKLTFRENAKAKTDHGAIEYKSPVSGDTPRHSNPVSTGSIDMDVSQPLATLADEVASLAKGQ</td>
</tr>
<tr>
<td>htau24</td>
<td>0N/4R</td>
<td>412</td>
<td>40.0</td>
<td>MAEPROEFGVDHAGTYLDRQDGQYMTMQDQEGTDAGLKLKEPLQTPTGEDSEEPSDSEGSETDAKSTPTAEAEAGIDTPSLEDEAGHVTOARMSKSDGSDDKAKAGDGTKIATPRGAPPAGGKGGQANATRIAPKTPAPKTPSGGSPEPPKGDRGSGYSGPGSGPTPSRTPSPLPTTEPVPKKVRTPKPSQASAKSLQATAPVPMPLDNKVKSGKSTHENLKHQQGGKVQIVYKPVLSDKVTSCGSLGNHHKPGGGQEVEKSLDFKDRVQSKIGSLDNITHVPGGGKKKEIETHKLTFRENAKAKTDHGAIEYKSPVSGDTPRHSNPVSTGSIDMDVSQPLATLADEVASLAKGQ</td>
</tr>
<tr>
<td>htau34</td>
<td>1N/4R</td>
<td>432</td>
<td>43.0</td>
<td>MAEPROEFGVDHAGTYLDRQDGQYMTMQDQEGTDAGLKLKEPLQTPTGEDSEEPSDSEGSETDAKSTPTAEAEAGIDTPSLEDEAGHVTOARMSKSDGSDDKAKAGDGTKIATPRGAPPAGGKGGQANATRIAPKTPAPKTPSGGSPEPPKGDRGSGYSGPGSGPTPSRTPSPLPTTEPVPKKVRTPKPSQASAKSLQATAPVPMPLDNKVKSGKSTHENLKHQQGGKVQIVYKPVLSDKVTSCGSLGNHHKPGGGQEVEKSLDFKDRVQSKIGSLDNITHVPGGGKKKEIETHKLTFRENAKAKTDHGAIEYKSPVSGDTPRHSNPVSTGSIDMDVSQPLATLADEVASLAKGQ</td>
</tr>
<tr>
<td>htau40</td>
<td>2N/4R</td>
<td>442</td>
<td>45.9</td>
<td>MAEPROEFGVDHAGTYLDRQDGQYMTMQDQEGTDAGLKLKEPLQTPTGEDSEEPSDSEGSETDAKSTPTAEAEAGIDTPSLEDEAGHVTOARMSKSDGSDDKAKAGDGTKIATPRGAPPAGGKGGQANATRIAPKTPAPKTPSGGSPEPPKGDRGSGYSGPGSGPTPSRTPSPLPTTEPVPKKVRTPKPSQASAKSLQATAPVPMPLDNKVKSGKSTHENLKHQQGGKVQIVYKPVLSDKVTSCGSLGNHHKPGGGQEVEKSLDFKDRVQSKIGSLDNITHVPGGGKKKEIETHKLTFRENAKAKTDHGAIEYKSPVSGDTPRHSNPVSTGSIDMDVSQPLATLADEVASLAKGQ</td>
</tr>
</tbody>
</table>

* designations taken from [9]

Insert 1: ESPLQTPTTEDGEPPGSETSDKASTPTAE
Insert 2: DVTAPLVDEAPGKQAAAOPHTEIEGTT

Repeat 1: QTAPVPMPLDNKVKSKSTHENLKHQQGGK
Repeat 2: QVIINKKLDSLNSVQSKCSDKNIHSVPGGGS
Repeat 3: VQIVYKPVLSKVTSCGSLGNHIIHPGGGQEVEK
Repeat 4: VEKSLDFKDRVQSKIGSLDNITHVPGGGK
Repeat 5: KKEIETHKLTFRENAKAKTDHGAIEYKSPVSGDTPRHSNPVSTGSIDMDVSQPLATLADEVASLAKGQ
crystals of the protein could not be obtained [11]. The loose, unfolded structure prevented the determination of the exact binding site of tau to microtubules. Tau is rather stable to treatment with acids or heating [12]. Tau consists of four domains characterized by their amino acid composition and function: the N-terminal “projection domain”, a proline-rich region, the microtubule-binding part, and the C-terminal sequence [9]. The protein is a dipolar molecule, its N-terminal region contains a large proportion of acidic amino acid residues (pI 3.8), whereas the proline-rich middle part and the C-terminus are dominated by basic amino acids (pI 11.4 and 10.8, respectively) [8]. The distribution of charges can be changed by post-translational modifications associated with pathological conditions [13]. Tau exists in six major isoforms differing in number of tubulin-binding domains and length, they vary in size from 352 to 441 amino acid residues (see Table 1). They also differ in biological activity. The short isoforms allow plasticity of the cytoskeleton whereas the longer ones may preferentially play a role in its stabilization [14]. In adult human brains, the six isoforms can be found whereas in fetal brains, only the shortest isoform is expressed [15].

A central domain of tau, residues 198 to 369 for the longest isoform, aggregates with tubulin and promotes formation of microtubules. It is characterized by 3 to 4 repeat domains, all involved in binding [16] (Fig. 1). The N-terminal part is called projection domain as it projects from the surface of the microtubule. It varies in length, as 1 or 2 short sequences can be inserted. The projection domain interacts with other cytoskeletal elements and the neuronal plasma membrane, and is involved in signal transduction [17].

Tau Pathology

The mechanism of tau aggregation is not completely understood. Association with microtubules preserves the disordered structure of the protein. Aberrant post-translational modifications and conformational changes of tau go together with loss of affinity for tubulin and risk of aggregate formation. Phosphorylation of two or three Ser/Thr residues is required for the optimal function of tau, for pertaining its unfolded structure in free form, whereas hyperphosphorylation (> 6 phosphoserines/threonines [7]) inactivates the protein. A part of the hyperphosphorylated protein aggregates yielding NFTs or tau fibers (paired helical filaments, PHFs), the rest (about 40%) remains dissolved in the cytosol disrupting microtubules [10,18]. The longest tau isoform consisting of 441 amino acids contains about 80 Ser and Thr residues, all potential phosphorylation sites. Up to now, more than 40 sites have been identified in tau isolated from AD brains. The equilibrium between phosphorylation and dephosphorylation is regulated by various enzymes, so hyperphosphorylation may also result from the inability to revert this modification of tau by action of a phosphatase. Quantitative in vitro studies demonstrated that phosphorylation of tau at Ser262, Thr231, and Ser235 inhibited microtubule binding by ~35%, ~25%, and ~10%, respectively [19]. Evaluation of the binding kinetics between hyperphosphorylated and normal tau suggested that Ser199/Ser202/Thr205, Thr212, Thr231/Ser235, Ser262/Ser266, and Ser432 could be critical phosphorylation sites that turn tau into an inhibitory molecule that destabilizes microtubules by removing tubulin-associated protein [20,21]. Further phosphorylation at Thr231, Ser396, and Ser422 promoted self-aggregation of tau into filaments.
Nε Acetylation of lysines may also be involved in the regulation of tau as well as in pathological processes [22]. This modification mediated by histone acetyltransferases (HAT) eliminates positive charges. Aberrant acetylation could interfere with the binding of tau to microtubules [23]. Acetylation of three lysine residues essential for tau binding has been detected. Acetylation of one of them, Lys280, could play a role in tangle formation [23,24]. Hyperphosphorylation promotes Nε acetylation. The side chain modification can be reverted by the NAD-dependent histone deacylase SIRT1 [25], so an equilibrium of acetylation/deacetylation could be maintained. Activity of SIRT1 is reduced in AD brains [26].

Enzymatic degradation is a major modification of tau protein in AD. Caspase-3-mediated cleavage at Asp421 [27] and further C-terminal truncation promotes maturation of NFTs [28]. The truncated proteins could serve as biomarkers for AD. N-terminal truncation at Asp13 is catalyzed by caspase-6, its role being less clear. Regular tau clearance via ubiquitinylation and degradation effected by the 26S proteasome or by autophagy is impeded in AD brains [29,30]. Glycation [31], deamidation [32], oxidation, and nitration [33,34] of tau are further modifications of the protein associated with tauopathies, whereas O-glycosylation of serine/threonine with N-acetylglucosamine reduces aberrant phosphorylation [35,36]. This beneficial modification of tau relies on an intact glucose metabolism in the brain, a condition not always met in case of AD. Accordingly, diabetes has been established as a risk factor for the disease [37].

Conformation strongly affects the enzynatic (de)phosphorylation of serines and threonines in the vicinity of a proline residue. The peptidyl-prolyl cis/trans isomerase Pin 1 isomerizes phosphoserine/threonine-proline motifs. A trans-cis conversion of the pThr231-Pro232 bond has been observed during early stages of AD. Pin1 prevents the accumulation of the resulting pathogenic cis form of tau by reverting the isomerization allowing dephosphorylation by PP2A [38]. Trans-tau promotes microtubule assembly. In AD brains, activities of both Pin1 and PP2A are decreased [39]. An antibody developed against cis (pThr231)-tau was shown to block brain injury and tauopathy [40,41].

VQIINK (tau 275-280) and VQIVYK (tau 306-311, PHF6), two hexapeptide motifs from the N-termini of repeats R2 and R3 with a marked tendency for β-sheet formation are involved in the aggregation of hyperphosphorylated tau yielding neurotoxic polymers [24,42]. PHF formation can be abolished by incorporating proline in one of the segments [43]. The chaperone Hsp90 binds to

Even though both Aβ and tau are related to Alzheimer’s disease, studies have shown that the degree of tau-related pathology correlates better with the degree of dementia than the amyloid plaque burden.
the VQIVYK motif [44] and, together with cochaperones, assists in tau clearance via autophagy or proteasome-mediated degradation [45]. Do et al. could demonstrate that the fragments Aβ (25–35), GSNKGA(I)GLM, and tau (273–284), GKVQINKKLDEL, could interact affecting the self-assembly process of both Aβ and tau [46].

Tau and Alzheimer’s Disease

Aggregation of β-amyloid peptides (which result from processing of amyloid precursor protein) into senile plaques as well as formation of neurofibrillary tangles (NFT) from tau protein are associated with Alzheimer’s disease. Neither plaques nor NFT are a cause of neurodegeneration, but markers of damage and progression of AD. Nevertheless, both proteins play a central role in the development of AD and hence serve as biomarkers measured in cerebrospinal fluid [47]. It is not absolutely clear yet which of them is the real culprit responsible for eventual neuronal death. A number of observations point at tau, for example, neurofibrillary degeneration, and not β-amyloidosis, correlates with the presence of dementia in humans [48-50]

Neurofibrillary degeneration due to aberrant phosphorylation of tau could be prevented by inhibiting the involved enzymes, which makes GSK-3β, cdk5, PKA and other kinases attractive targets in developing AD cures [1,4,46]. Dephosphorylation could be promoted by upregulating PP2A, a phosphatase with broad substrate specificity.

Lithium inhibits GSK-3β, as it competes with magnesium [51,52]. In clinical studies, lithium was administered alone or in combination with valproate [53]. Further GSK-3β-inhibiting compounds as aloisines, flavopiridol, hymenialdisine, paullones, and staurosporine are under evaluation. The small molecule GSK-3β inhibitor tideglusib has reached clinical phase II for mild-to-moderate AD [54]. Aloisines and flavopiridol also inhibit cdk5, as does the purine olomucin. A reduction of tau hyperphosphorylation by administration of another purine, the selective cdk5 inhibitor roscovitine, could be achieved in mice and rats [55,56]. PP2A activity can be increased by down-regulating the two endogenous inhibitor proteins 1PP2A and 1PP2A [6,57]. The NMDA antagonist memantine, a well-established drug for the management of moderate to severe AD, reverses tau hyperphosphorylation by regenerating PP2A [58]. The antioxidant melatonin has also been shown to restore the activity of the inhibited enzyme [59,60].

Davunetide (AL-108), an octapeptide corresponding to murine activity-dependent neuroprotective protein (74-81), binds to tubulin and promotes microtubule assembly [61]. Formulations for intranasal application and injection have been evaluated in clinical studies. Clinical tests were also performed with methylene blue (methylthioninium chloride) [62]. The dye prevents tau assembly and disrupts existing aggregates, though the mode of action is not known yet [63].

Results obtained from immunotherapeutic studies using AD models are encouraging [64]. Immunizations with Aβ or tau fragments showed positive effects such as improvement of locomotor activity and ability to perform cognitive tasks. Active immunization with phosphorylated tau fragments as (pSer 396,404)-Tau (379-408) [65], (pSer²⁰²,pThr²⁰⁵)- Tau (195-231), (pThr 212 , pSer 214)-Tau (207-220), or (pThr 231)-Tau (224-238) [66] decreased tau pathology.

Conclusion

Numerous promising therapeutic approaches tackling the neuropathological effects of either aberrant tau modification or β-amyloid aggregate formation are being followed currently. This gives rise to hope that an effective cure for AD will be developed in the foreseeable future.
REFERENCES

The many faces of tau.
Neuron 70, 410-426 (2011) Review

Tau domains, phosphorylation, and interactions with microtubules.

Dephosphorylation of tau by protein phosphatase 5: impairment in Alzheimer’s disease.
J. Biol. Chem. 280, 1790-1796 (2005)

Hyperphosphorylation of microtuberu- associate protein tau: a promising therapeutic target for Alzheimer disease.

PP2A regulates tau phosphorylation directly and also indirectly via activating GSK-3beta.

Alzheimer’s disease neurofibrillary degeneration: pivotal and multifactorial.

Tau in Alzheimer disease and related tauopathies.

Structure and pathology of tau protein in Alzheimer disease.

[9] E.M. Mandelkow and E. Mandelkow
Biochemistry and cell biology of tau protein in neurofibrillary degeneration.

J. Biol. Chem. 268, 24374-24384 (1993)

The natively unfolded character of Tau and its aggregation to Alzheimer-like paired helical filaments.
Biochemistry 47, 10526-10539 (2008)

Physical and chemical properties of purified tau factor and the role of tau in microtubule assembly.

Biochemistry of Tau in Alzheimer’s disease and related neurological disorders.

[14] H. Yoshida and M.J. Goedert
Phosphorylation of microtubule-associated protein tau by AMPK-related kinases.
J. Neurochem. 120, 165-176 (2012)

Tau protein as a differential biomarker of tauopathies.

[16] R. Brandt and G. Lee
J. Biol. Chem. 268, 3414-3419 (1993)

Interaction of tau with the neural plasma membrane mediated by tau’s amino-terminal projection domain.

[18] A.D.C. Alonso et al.
Role of abnormally phosphorylated tau in the breakdown of microtubules in Alzheimer disease.

Phosphorylation of tau at both Thr231 and Ser262 is required for maximal inhibition of its binding to microtubules.

The natively unfolded character of Tau and its aggregation to Alzheimer-like paired helical filaments.
Biochemistry 47, 10526-10539 (2008)

Physical and chemical properties of purified tau factor and the role of tau in microtubule assembly.

[22] N. Sergeant et al.
Biochemistry of Tau in Alzheimer’s disease and related neurological disorders.

[23] H. Yoshida and M.J. Goedert
Phosphorylation of microtubule-associated protein tau by AMPK-related kinases.
J. Neurochem. 120, 165-176 (2012)

Biochemistry of Tau in Alzheimer’s disease and related neurological disorders.

J. Biol. Chem. 268, 3414-3419 (1993)

[26] R. Brandt et al.
Interaction of tau with the neural plasma membrane mediated by tau’s amino-terminal projection domain.
C. Julien et al.
Sirtuin 1 reduction parallels the accumulation of tau in Alzheimer disease.

T.C. Gamblin et al.
Caspase cleavage of tau: linking amyloid and neurofibrillary tangles in Alzheimer’s disease.

A.L. Guillozet-Bongaarts et al.
Tau truncation during neurofibrillary tangle evolution in Alzheimer’s disease.

A.S. Chesser et al.
Tau clearance mechanisms and their possible role in the pathogenesis of Alzheimer disease.
Front. Neurol. 4, 22 (2013)

M.J. Lee et al.
Tau degradation: the ubiquitin-proteasome system versus the autophagy-lysosome system.

B. Kuhla et al.
Effect of pseudophosphorylation and cross-linking by lipid peroxidation and advanced glycation end product precursors on tau aggregation and filament formation.

A. Watanabe et al.
Deamidation and isoaspartate formation in smeared tau in paired helical filaments: unusual properties of the microtubule-binding domain of tau.
J. Biol. Chem. 274, 7368-7378 (1999)

M.R. Reynolds et al.
Site-specific nitration and oxidative dityrosine bridging of the tau protein by peroxynitrite: implications for Alzheimer’s disease.
Biochemistry 44, 1690-1700 (2005)

M.R. Reynolds et al.
Nitration in neurodegeneration: deciphering the “Hows” “nYs.”
Biochemistry 46, 7325-7336 (2007)

L.A. Robertson et al.
The potential role of tau protein O-glycosylation in Alzheimer’s disease.
J. Alzheimers Dis. 6, 489-495 (2004)

S.A. Yuzwa et al.
Increasing O-GlcNAc slows neurodegeneration and stabilizes tau against aggregation.
Nat. Chem. Biol. 8, 393-399 (2012)

N. Sato and R. Morishita
The roles of lipid and glucose metabolism in modulation of β-amyloid, tau, and neurodegeneration in the pathogenesis of Alzheimer disease.

C. Smet et al.
The peptidyl prolyl cis/trans-isomerase Pin1 recognizes the phospho-Thr212–Pro213 site on Tau.

M. Balastik et al.
Pin1 in Alzheimer’s disease: multiple substrates, one regulatory mechanism?

K. Nakamura et al.
Proline isomer-specific antibodies reveal the early pathogenic tau conformation in Alzheimer’s disease.
Cell 149, 232-244 (2012)

A. Kondo et al.
Antibody against early driver of neurodegeneration cis P-tau blocks brain injury and tauopathy.

M. von Bergen et al.
Assembly of tau protein into Alzheimer paired helical filaments depends on a local sequence motif (306VQI-VYK311) forming β structure.

M.M. Mocanu et al.
The potential for beta-structure in the repeat domain of tau protein determines aggregation, synaptic decay, neuronal loss, and coassembly with endogenous Tau in inducible mouse models of tauopathy.

C. Schirmer et al.
Hsp90 directly interacts, in vitro, with amyloid structures and modulates their assembly and disassembly.

A. Salminen et al.
Hsp90 regulates tau pathology through co-chaperone complexes in Alzheimer’s disease.

T. Do et al.
Interactions between amyloid-β and Tau fragments promote aberrant aggregates: implications for amyloid toxicity.

J.-H. Kang et al.
Clinical utility and analytical challenges in measurement of cerebrospinal fluid amyloid-β(1-42) and τ proteins as Alzheimer disease biomarkers.

E. Giacobini and G. Gold
Alzheimer disease therapy - moving from amyloid-β to tau.

G.S. Bloom
Amyloid-β and tau: the trigger and bullet in Alzheimer disease pathogenesis.
JAMA Neurol. 71, 505-508 (2014)
A. Boutajangout and T. Wisniewski
Tau-based therapeutic approaches for Alzheimer’s disease - a mini-review,
Gerontology 60, 381-385 (2014).

W. Noble et al.
Inhibition of glycogen synthase kinase-3 by lithium correlates with reduced tauopathy and degeneration in vivo.

P.N. Tariot and P.S. Aisen
Can lithium or valproate untie tangles in Alzheimer’s disease?

H. Hampel et al.

S. Lovestone et al.
A phase II trial of tideglusib in Alzheimer’s disease.

M. Kitazawa et al.
Lipopolysaccharide-induced inflammation exacerbates tau pathology by a cyclin-dependent kinase 5-mediated pathway in a transgenic model of Alzheimer’s disease.

Y. Wen et al.
Cdk5 is involved in NFT-like tauopathy induced by transient cerebral ischemia in female rats.

I. Tsujiro et al.
Inhibitors of protein phosphatase-2A from human brain structures, immunocytochemical localization and activities towards dephosphorylation of the Alzheimer type hyperphosphorylated tau.

L. Li et al.
Memantine inhibits and reverses the Alzheimer type abnormal hyperphosphorylation of tau and associated neurodegeneration.

X.-C. Li, et al.
Effect of melatonin on calyculin A-induced tau hyperphosphorylation.

L.Q. Zhu et al.
Effect of inhibiting melatonin biosynthesis on spatial memory retention and tau phosphorylation in rat.

I. Gozes et al.
Addressing Alzheimer’s disease tangles: From NAP to AL-108.
Curr. Alzheimer Res. 6, 455-460 (2009)

T. Gura
Hope in Alzheimer’s fight emerges from unexpected places.

C.M. Wischik et al.
Selective inhibition of Alzheimer disease-like tau aggregation by phenothiazines.

F. Panza et al.
Immunotherapy for Alzheimer’s disease: from anti-β-amyloid to tau-based immunization strategies.
Immunotherapy 4, 213-238 (2012)

A.A. Asuni et al.
Immunotherapy targeting pathological tau conformers in a tangle mouse model reduces brain pathology with associated functional improvements.

M. Boimel et al.
Efficacy and safety of immunization with phosphorylated tau against neurofibrillary tangles in mice.
Bachem’s offer for Alzheimer’s research comprises a broad choice of tau protein fragments and amyloid peptides. Please see also our Product Monograph “Amyloid Peptides”.

For more details on our Alzheimer’s disease peptides, please go to: shop.bachem.com
Microtubule-Associated Protein (142-161) (human)
(Tau Peptide (422-441))
H-8062 NEW
SPQLATLADEVSAKLQGL

Tau Peptide (1-16)
H-8004 NEW
MAEPRQEFEVMEDMAG

Tau Peptide (45-73)
(Exon 2/Insert 1 Domain)
H-7804 NEW
ESPLQTPTEDGSEEPGSETSDAKSTPTAE

Tau Peptide (74-102)
(Exon 3/Insert 2 Domain)
H-7806 NEW
DVTAPLVDEGAPGKQAAAQPHTEIPEGTT

(Ser(PO3H2)202, Thr(PO3H2)205)-Tau Peptide (194-213)
H-8166 NEW
RSGYSSPG(\(p\))SPG(\(p\))TPGSRSTP

(Thr(PO3H2)231)-Tau Peptide (225-237)
H-8048 NEW
KVAVVR(\(p\))TPPKSPS

Acetyl-Tau Peptide (244-274)
(Repeat 1 Domain)
H-7982 NEW
QTAPVPMPPDLKNVKSKIGSTENLKHQP-GGGK

Acetyl-Tau Peptide (244-274)
(Repeat 1 Domain)
H-7808 NEW
Ac-QTAPVPMPPDLKNVKSKIG-STENLKHQP-GGGK

Tau Peptide (245-274)
(Repeat 1 Domain)
H-7978 NEW
TAPVPMPPDLKNVKSKIGSTENLKHQP-GGGK

Acetyl-Tau Peptide (274-288)
(Repeat 2 Domain)
H-7812 NEW
PGGGSQIVYKYKPVDL

Tau Peptide (277-291)
H-8074 NEW
IINKKLDSLNVQSKC

Acetyl-Tau Peptide (275-305)
(Repeat 2 Domain)
H-8082 NEW
GSVQIVYKYKPVDL

Tau Peptide (298-312)
H-8078 NEW
KHVPGGGSQIVYKYK

Tau Peptide (301-315)
H-8082 NEW
PGGGSQIVYKYKPVDL

Tau Peptide (304-318)
H-8084 NEW
GVQIVYKYKPVDL

Tau Peptide (306-317)
H-8096 NEW
VQIVYKYKPVDL
Tau Peptides (Continued)

Tau Peptide (306-336) (Repeat 3 Domain)
H-7814 NEW
VQIVYKPVDSLKVTSGSLGNIHHKP-GGGQ

Biotinyl-Tau Peptide (306-336) (Repeat 3 Domain)
H-8028 NEW
Biotinyl-VQIVYKPVDSLKVTSGSLGNI-HHKPGGGQ

Tau Peptide (307-321)
H-8086 NEW
QIVYKPVDSLKVTSK

Tau Peptide (323-335)
H-7818 NEW
GDTSPRHLSNVKK

Tau Peptide (337-368) (Repeat 4 Domain)
H-7816 NEW
VEVKSEKLDFKDRVQSKIGSLDNITHVP-GGGN

Tau Peptide (379-408)
H-8172 NEW
RENAKTDHGAEIVYKSPVVS-GDTPRHL

Biotinyl-Tau Peptide (379-408)
H-8164 NEW
RENAKTDHGAEIVYK(p)SPVVS(p)-SPRH

Lys-Trp-(Ser(GlcNAc-β-D)400)-Tau Peptide (388 – 411)-Lys-(biotinyl) amide
H-7822 NEW
KWKHGAEIVYKSSPVVS(GlcNAc-β-D)GDTPRHLNSVKK(biotinyl)-NH₂

Tau Peptide (472-487)-PEG6-(507-526) (human)
H-7988 NEW
RGAPPQGKQANATR-amino-PEG6-propionyl-KSGDRSGYGSSPSPGTPGSR

PHF6 AND RELATED PEPTIDES

PHF6
H-8098 NEW
VQIVYK

Acetyl-PHF6 amide
H-8122 NEW
Ac-VQIVYE-NH₂

Ac-Tyr-Lys-NH₂
H-8124 NEW
Ac-YK-NH₂

Ac-Val-Tyr-Lys-NH₂
H-8108 NEW
Ac-VYK-NH₂

Acetyl-PHF4 amide
H-8106 NEW
Ac-IVYK-NH₂

Acetyl-PHF5 amide
H-8104 NEW
Ac-QIVYK-NH₂

Acetyl-PHF6 amide
H-8112 NEW
Ac-VQIVYK-NH₂

Acetyl-PHF6KE amide
H-8126 NEW
Ac-vqivykRRRRRRRRR-NH₂

Acetyl-PHF6IV amide
H-8114 NEW
Ac-VQVYK-NH₂

Acetyl-PHF6QV amide
H-6118 NEW
Ac-VIVYK-NH₂

Acetyl-PHF6YA amide
H-8116 NEW
Ac-VQIVAK-NH₂

T-Peptide (all-D-PHF6-R9)
H-8126 NEW
Ac-vqivykRRRRRRRRR-NH₂
Enzyme inhibitors and substrates and further peptides and biochemicals for Alzheimer’s research are available on our online shop shop.bachem.com

Areas of Interest
- Alzheimer’s Disease
- Tau
PIN-1 SUBSTRATES

Ac-Ala-Ala-Ser(PO₃H₂)-Pro-Arg-pNA L-2155 Ac-AA(p)SP-pNA
Suc-Ala-Glu-Pro-Phe-AMC I-1750 Suc-AEPF-AMC
Suc-Ala-Glu-Pro-Phe-pNA L-1635 Suc-AEPF-pNA

H-Trp-Phe-Tyr-Ser(PO₃H₂)-Pro-Arg-AMC I-1930 WFY(p)SPR-AMC
H-Trp-Phe-Tyr-Ser(PO₃H₂)-Pro-Arg-pNA L-2075 WFY(p)SPR-pNA

cAMP-Dependent Protein Kinase Inhibitor-α (5-22) amide (human, mouse, rabbit, rat)
H-3222 TTYADFIASGRTRRNAI-NH₂
H-Arg-Gly-Tyr-Ala-Leu-Gly-OH M-1105 RGYALG
PKA Inhibitor (6-22) amide N-2040 TYADFIASGRTRRNA-NH₂
PKItide H-3234 IAAGRTGRRQAIHDILVAA
H-Arg-Lys-Ile-Ser-Ala-Ser-Glu-Phe-Asp-Arg-Pro-Leu-Arg-OH (BPDEtide) H-3216 RKKASFEFDRPLR
Calcineurin Substrate H-2084 DLDVIPGRFDRRVSVAAE
H-Gly-Arg-Gly-Leu-Ser-Leu-Ser-Arg-OH H-7405 GRGLSLSR
H1-7 H-1805 RRRASGP
Kemptide trifluoroacetate salt M-1510 LRRASLG trifluoroacetate salt
Kemptide acetate salt M-2725 LRRASLG acetate salt
(Trp⁴)-Kemptide (Chocktide) M-1525 LRRWSLG
(Val⁶,Ala⁷)-Kemptide M-1515 LRRASVA

PKA INHIBITORS AND SUBSTRATES

Melatonin Q-1300
N-Acetyl-2-benzyl-tryptamine (Luzindole) Q-1885
Perivascular cell containing
tau protein.
Fluorescence deconvolution light
micrograph of a section through
a perivascular cell, showing tau
protein (red). Tau protein is an
abundant neural protein, but
aggregations of this protein are
thought to play a role in brain
disorders such as Alzheimer’s
disease. Magnification: x200,
when printed 10 cm wide.

R. BICK, B. POINDEXTER, UT
MEDICAL SCHOOL/SCIENCE
PHOTO LIBRARY