## BACHEM

## BACHEM’S PEPTIDE CALCULATOR

## Calculation of the Molecular Weight

The following formula is used for the calculation of the molecular weight of an amino acid sequence:
$M=M_{n}+M_{c}+\sum_{i} N_{i} M_{i}$
M Molecular weight of the amino acid sequence
$M_{n} \quad$ Molecular weight of the $N$-terminus
$M_{c} \quad$ Molecular weight of the C -terminus
$\mathrm{N}_{\mathrm{i}} \quad$ Number of the amino acid residues
$\mathrm{M}_{\mathrm{i}} \quad$ Molecular weight of the amino acid residues

| Amino Acid |  | Molecular Weight |
| :--- | :--- | :--- |
| One Let- <br> ter Code | Three <br> Letter <br> Code |  |
| A | Ala | 71.07884 |
| C | Cys | 103.1448 |
| D | Asp | 115.0886 |
| E | Glu | 129.1155 |
| F | Phe | 147.1766 |
| G | Gly | 57.05196 |
| H | His | 137.1412 |
| I | Ile | 113.1595 |
| K | Lys | 128.1742 |
| L | Leu | 113.1591 |
| M | Met | 131.1986 |
| N | Asn | 114.1039 |
| P | Pro | 97.11671 |
| Q | Gln | 128.1308 |
| R | Arg | 156.1876 |
| S | Ser | 87.07824 |
| T | Thr | 101.1051 |
| V | Val | 99.13259 |
| W | Trp | 186.2133 |
| Y | Tyr | 163.176 |
|  |  |  |


| N-Terminus | Molecular Weight |
| :--- | :--- |
| H | 1.00794 |
| Ac | 43.04522 |
| Biotinyl | 227.3074 |
| Pyr | 112.1082 |


| C-Terminus | Molecular Weight |
| :--- | :--- |
| OH | 17.00734 |
| $\mathrm{NH}_{2}$ | 16.02262 |

## Calculation of the Net Charge

The following formula is used for the calculation of the net charge of a peptide sequence at a given pH :
$Z=\sum_{i} N i \frac{10^{\text {pKai }}}{10^{\mathrm{pH}}+10^{\text {pKai }}}-\sum_{j} N j \frac{10^{\mathrm{pH}}}{10^{\mathrm{pH}}+10^{\mathrm{pKaj}}}$

Z Net charge of the peptide sequence
$N_{i} \quad$ Number of arginine, lysine, and histidine residues and the $N$-terminus
$\mathrm{pKa}_{\mathrm{i}} \quad \mathrm{pKa}$ values of the N -terminus and the arginine, lysine, and histidine residues
$\mathrm{N}_{\mathrm{j}} \quad$ Number of of aspartic acid, glutamic acid, cysteine, and tyrosine residues and the C-terminus
$\mathrm{pKa} \mathrm{i}_{\mathrm{j}}$ pKa values of the C-terminus and the aspartic acid, glutamic acid, cysteine, and tyrosine residues
$\mathrm{pH} \quad \mathrm{pH}$ value

| Amino Acid |  | pKa Value* |
| :--- | :--- | :--- |
| One Let- <br> ter Code | Three <br> Letter <br> Code |  |
| C | Cys | 8.33 |
| D | Asp | 3.86 |
| E | Glu | 4.25 |
| H | His | 6.0 |
| K | Lys | 10.53 |
| R | Arg | 12.48 |
| Y | Tyr | 10.07 |


| N-Terminus | pKa Value* |
| :--- | :--- |
| $H$ | 9.69 |


| C-Terminus | pKa Value* |
| :--- | :--- |
| OH | 2.34 |

*Lehninger (1982) Principles of Biochemistry

Calculation of the Isoelectric Point

The isoelectric point, pl , is the pH at which the net charge of the peptide is zero. The isoelectric point is calculated by approximation (accuracy $\pm 0.01$ ).

## Calculation of the Average Hydrophilicity

| Amino Acid |  | Hydrophilicity <br> Value* |
| :--- | :--- | :--- |
| One Let- <br> ter Code | Three <br> Letter <br> Code |  |
| A | Ala | -0.5 |
| C | Cys | -1.0 |
| D | Asp | 3.0 |
| E | Glu | 3.0 |
| F | Phe | -2.5 |
| G | Gly | 0.0 |
| H | His | -0.5 |
| I | Ile | -1.8 |
| K | Lys | 3.0 |
| L | Leu | -1.8 |
| M | Met | -1.3 |
| N | Asn | 0.2 |
| P | Pro | 0.0 |
| Q | Gln | 0.2 |
| R | Arg | 3.0 |
| S | Ser | 0.3 |
| T | Thr | -0.4 |
| V | Val | -1.5 |
| W | Trp | -3.4 |
| Y | Tyr | -2.3 |
|  |  |  |
|  |  |  |

The following values are used for the calculation of the average hydrophilicity:
*Hopp \& Woods
The hydrophilicity value for each amino acid in the peptide sequence is indicated in a bar graph. The ratio of hydrophilic residues to total number of amino acids is reported in \%.

