HFIP-treated amyloid β-peptides 1-40 and 1-42 have been added to our catalog.

Amyloid peptides are prone to aggregation. Treating amyloid β-peptides with 1,1,1,3,3,3-hexafluoroisopropanol (HFIP) is the standard method for disrupting amyloid fibrils and generating the Aβ monomers. Removal of this volatile solvent leaves films of disaggregated peptides which can be reconstituted in DMSO, double-distilled water, or buffers for further studies (please see reverse side for a compilation of literature references).

Working with HFIP-treated Aβ40 and Aβ42 has the advantage of getting more reproducible results whereas the commercially available untreated equivalents of Aβ40 and Aβ42 contain varying amounts and types of oligomeric structures such as fibrils.

AMYLOID β-PEPTIDES

<table>
<thead>
<tr>
<th>HFIP-Treated Peptides</th>
<th>Catalog No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amyloid β-Protein (1-42)</td>
<td></td>
</tr>
<tr>
<td>0.1 mg/vial</td>
<td>H-7442.0100</td>
</tr>
<tr>
<td>0.5 mg/vial</td>
<td>H-7442.0500</td>
</tr>
<tr>
<td>1 mg/vial</td>
<td>H-7442.1000</td>
</tr>
<tr>
<td>Amyloid β-Protein (1-40)</td>
<td></td>
</tr>
<tr>
<td>0.1 mg/vial</td>
<td>H-7438.0100</td>
</tr>
<tr>
<td>0.5 mg/vial</td>
<td>H-7438.0500</td>
</tr>
<tr>
<td>1 mg/vial</td>
<td>H-7438.1000</td>
</tr>
</tbody>
</table>

TEM Studies

Our HFIP-treated amyloid β-peptide (1-42) H-7442 and amyloid β-peptide (1-40) H-7438 were obtained by dissolving the corresponding Aβ peptides H-1368 and H-1194 in HFIP, aliquoting, and removing the solvent as described in the literature. The morphology of the resulting peptides was studied by transmission electron microscopy (TEM).

Samples of both peptides were reconstituted in ultrapure water at a concentration of 10 mg/mL and incubated at 37°C for 20h. Then, 20 μL aliquots of each sample were applied to Formvar-coated copper grids for 5 min for adsorption, followed by a washing step by floating on a drop of water. The peptide-treated grids were stained with 2% aqueous uranyl acetate.

TEM studies of amyloid fibril formation have been done by Solvias AG using a Zeiss EM 910 at 100kV. Images of the growing β-amyloid fibrils were taken by a digital camera.

![Fig. 1: TEM image of HFIP-treated Aβ 1-42.](image)

The magenta arrow points to the nucleation centers where aggregation starts. The yellow arrow indicates the fibrils which are formed as long thin helical structures with regular twists.

![Fig. 2: TEM image of HFIP-treated Aβ 1-40.](image)

Meaning of arrows as indicated for Fig. 1.
Literature References

Stine, W. B., Jr., Dahlgren, K. N., Krafft, G. A. and LaDu, M. J.
In vitro characterization of conditions for amyloid-beta
peptide oligomerization and fibrillogenesis.

Barghorn, S., Nimmrich, V., Striebinger, A., Krantz, C., Keller,
P., Janson, B., Bahr, M., Schmidt, M., Bitner, R. S., Harlan, J.,
Barlow, E., Ebert, U. and Hillen, H.
Globular amyloid beta-peptide oligomer - a homogenous and
stable neuropathological protein in Alzheimer’s disease.
J. Neurochem. 95, 834-847 (2005)

Nichols, M. R., Moss, M. A., Reed, D. K., Cratic-McDaniel, S.,
Hoh, J. H. and Rosenberry, T. L.
Amyloid-beta protofibrils differ from amyloid-beta aggre-
gates induced in dilute hexafluoroisopropanol in stability and
morphology.
J. Biol. Chem. 280, 2471-2480 (2005)

N-Methylated peptide inhibitors of beta-amyloid aggregation
and toxicity. Optimization of the inhibitor structure.
Biochemistry 45, 9906-9918 (2006)

Teplow, D. B.
Preparation of amyloid beta-protein for structural and func-
tional studies.

Shin, T. M., Isaas, J. M., Hsieh, C. L., Kayed, R., Glabe, C. G.,
Langen, R. and Chen, J.
Formation of soluble amyloid oligomers and amyloid fibrils by
the multifunctional protein vitronectin.

Jan, A., Hartley, D. M. and Lashuel, H. A.
Preparation and characterization of toxic Abeta aggregates
for structural and functional studies in Alzheimer’s disease
research.
Nat. Protoc. 5, 1186-1209 (2010)

Broersen, K., Jonckheere, W., Rozenksi, J., Vandersteen, A.,
Pauwels, K., Pastore, A., Rousseau, F. and Schymkowitz, J.
A standardized and biocompatible preparation of aggregate-
free amyloid beta peptide for biophysical and biological
studies of Alzheimer’s disease.

Stine, W. B., Jungbauer, L., Yu, C. and LaDu, M. J.
Preparing synthetic Abeta in different aggregation states.

Montañés, M., Casabona, D., Sarasa, L., Pesini, P.
and Sarasa, M.
Prevention of amyloid-beta fibril formation using anti-
bodies against the C-terminal region of amyloid-beta1-40
and amyloid-beta1-42.
J. Alzheimers Dis. 34, 133-137 (2013)

In addition to our large choice of catalog peptides, we
offer comprehensive custom synthesis services.
If the amyloid peptide you require is not included in
this list, please ask for a quote.

Our e-brochures can be downloaded at www.bachem.com